Respuesta :
Answer:
10 shirts, 6 pants
Step-by-step explanation:
Let y = the number of shirts
Let x = the number of pants
y + 2 = 2x
x + y = 16
y = 2x - 2
x + (2x - 2) = 16
3x = 18
x = 6
y + 6 = 16
y = 10
Answer:
[tex]\textsf{A.} \quad \begin{cases}y=2x-2\\x+y=16\end{cases}[/tex]
[tex]\textsf{B. \quad 6 pants and 10 shirts}[/tex]
Step-by-step explanation:
Part A
Given variables:
- Let x = the number of pants Sylvia packed.
- Let y = the number of shirts Sylvia packed.
If the number of shirts Sylvia packed was 2 fewer than twice the number of pants she packed:
[tex]\implies y=2x-2[/tex]
If the total number of pairs of pants and shirts was 16:
[tex]\implies x+y=16[/tex]
Therefore, the system of equations that represents the problem is:
[tex]\begin{cases}y=2x-2\\x+y=16\end{cases}[/tex]
Part B
System of equations:
[tex]\begin{cases}y=2x-2\\x+y=16\end{cases}[/tex]
Substitute the first equation into the second equation and solve for x:
[tex]\implies x+2x-2=16[/tex]
[tex]\implies 3x-2=16[/tex]
[tex]\implies 3x=18[/tex]
[tex]\implies x=6[/tex]
Substitute the found value of x into the first equation and solve for y:
[tex]\implies y=2(6)-2[/tex]
[tex]\implies y=12-2[/tex]
[tex]\implies y=10[/tex]
Therefore, Sylvia packed:
- 6 pants
- 10 shirts