Respuesta :

Answer:

  (-6, -2)

Step-by-step explanation:

For points A(-10, 2) and B(-3, -5), you want the point P that makes AP/PB = 4/3.

Setup

Using (x, y) for the coordinates of P, we have ...

  AP/PB = 4/3

  ((x, y) -(-10, 2))/((-3, -5) -(x, y)) = 4/3

Solution

This simplifies to ...

  (x+10, y-2)/(-3-x, -5-y) = 4/3

Cross multiplying gives ...

  3(x +10, y -2) = 4(-3 -x, -5 -y)

  (3x+30, 3y-6) = (-12-4x, -20-4y)

Treating these equations separately, we have ...

  3x +30 = -12 -4x   ⇒   7x = -42   ⇒   x = -6

  3y -6 = -20 -4y   ⇒   7y = -14   ⇒   y = -2

The point that partitions the segment is (-6, -2).

__

Additional comment

The point that partitions AB in the ratio m/n is ...

  P = (mB +nA)/(m+n)

  P = (4(-3, -5) +3(-10, 2))/(4+3) = (-12-30, -20+6)/7 = (-42, -14)/7 = (-6, -2)

Above, we started from the basic requirement, rather than using the formula that results from that requirement.