use the following distribution for questions 9-16: p(x,y) y 0 5 10 15 x 0 0.02 0.06 0.02 0.10 5 0.04 0.15 0.20 0.10 10 0.01 0.15 0.14 0.01 question 9: find e[x y]

Respuesta :

The value of E[X Y] is 44.25.

According to the question,

E[X] = ∑ x × P(X=x)

=0×P(x=0) + 5×P(x=1) + 10×P(x=2)

= 0+5×(0.49)+10×(0.31)

= 5.55

E[Y] = ∑ y × P(Y=y)

=0×P(x=0) + 5×P(x=5) + 10×P(x=10) + 15×P(x=15)

= 0+5×(0.49)+10×(0.31)+15×(0.21)

= 8.55

Now,

E [X²] =  ∑ x² × P(X=x)

= 0²×P(x=0) + 5²×P(x=1) + 10²×P(x=2)

= 0 + 25×0.49 + 100×0.31

= 43.25

E[Y²] = ∑ y² × P(Y=y)

= 0²×P(x=0) + 5²×P(x=5) + 10²×P(x=10) + 15²×P(x=15)

= 0 + 25×0.49 + 100×0.31 + 225×0.21

= 92.25

Therefore , V[X] = E[X²] - {E[X]} = 43.25 - 30.8025 =12.4475

V[Y] = E[Y²] - {E[Y]}² = 92.25 - 73.1025 = 19.1475

E[X Y] = ∑xy P(X=x, Y=y)

= {0×0×P(X=0,Y=0)} + {0×5×P(X=0,Y=5)} + {0×10×P(X=0,Y=0)} + {0×15×P(X=0, Y =15)} + {5×0×P(X=5,Y=0)} + {5×10×P(x=5,Y=10)} +  {5×5×P(x=5,Y=5)} +  {5×15×P(x=5,Y=15)} + {10×0×P(x=10,Y=0)} + {10×5×P(x=10,Y=5)} + {10×10×P(x=10,Y=10)} + {10×15×P(x=10,Y=15)}

= 0+0+0+0+0 + {50×0.20} +{25×0.15} + {75×0.10} + 0 + {50×0.15} + {100×0.14} + {150×0.01}

= 10 + 3.75 + 7.5 + 7.5 + 14 + 1.5

Hence the final answer is = 41.25

To learn more about probability and their theorems,

https://brainly.com/question/29381779

#SPJ4