A regular polygon is shown with one of its angle measures labeled a.

5 sided regular polygon with one angle labeled a

If m∠a = (3z + 72)°, find the value of z.
z = 9
z = 12
z = 24
z = 32

Respuesta :

Answer:

  • B) z = 12

===========================

Sum of interior angles of a regular polygon is:

  • S = 180(n - 2), where n- sides of polygon

Find the measure of interior angle a:

  • a = S/5 = 180(5 - 2)/5 = 540/5 = 108

Equate the values of angle a and solve for z:

  • 3z + 72 = 108
  • 3z = 108 - 72
  • 3z = 36
  • z = 12

Correct choice is B.

Answer:

z = 12

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Interior angle of a regular polygon}\\\\$\dfrac{180^{\circ}(n-2)}{n}$\\\\where $n$ is the number of sides.\\\end{minipage}}[/tex]

Given that the regular polygon has 5 sides, then the measure of one interior angle is:

[tex]\implies \dfrac{180^{\circ}(5-2)}{5}=\dfrac{180^{\circ}(3)}{5}=\dfrac{540^{\circ}}{5}=108^{\circ}[/tex]

If "a" is the measure of one angle, and m∠a = (3z + 72)° then:

[tex]\implies m \angle a=108^{\circ}[/tex]

[tex]\implies (3z+72)^{\circ}=108^{\circ}[/tex]

[tex]\implies 3z+72=108[/tex]

[tex]\implies 3z+72-72=108-72[/tex]

[tex]\implies 3z=36[/tex]

[tex]\implies \dfrac{3z}{3}=\dfrac{36}{3}[/tex]

[tex]\implies z=12[/tex]