Respuesta :
Answer:
- B) z = 12
===========================
Sum of interior angles of a regular polygon is:
- S = 180(n - 2), where n- sides of polygon
Find the measure of interior angle a:
- a = S/5 = 180(5 - 2)/5 = 540/5 = 108
Equate the values of angle a and solve for z:
- 3z + 72 = 108
- 3z = 108 - 72
- 3z = 36
- z = 12
Correct choice is B.
Answer:
z = 12
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Interior angle of a regular polygon}\\\\$\dfrac{180^{\circ}(n-2)}{n}$\\\\where $n$ is the number of sides.\\\end{minipage}}[/tex]
Given that the regular polygon has 5 sides, then the measure of one interior angle is:
[tex]\implies \dfrac{180^{\circ}(5-2)}{5}=\dfrac{180^{\circ}(3)}{5}=\dfrac{540^{\circ}}{5}=108^{\circ}[/tex]
If "a" is the measure of one angle, and m∠a = (3z + 72)° then:
[tex]\implies m \angle a=108^{\circ}[/tex]
[tex]\implies (3z+72)^{\circ}=108^{\circ}[/tex]
[tex]\implies 3z+72=108[/tex]
[tex]\implies 3z+72-72=108-72[/tex]
[tex]\implies 3z=36[/tex]
[tex]\implies \dfrac{3z}{3}=\dfrac{36}{3}[/tex]
[tex]\implies z=12[/tex]