Respuesta :
Answer:
Option A - [tex]4(2a\cdot5) = (4\cdot2a) \cdot5[/tex]
Step-by-step explanation:
Given : Pair of expressions.
A. [tex]4(2a\cdot5) = (4\cdot2a) \cdot5[/tex]
B. [tex]4(2a\cdot5) = 8a\cdot20[/tex]
C. [tex]4(2a\cdot5) = (2a\cdot 5) \cdot4[/tex]
D. [tex]4(2a\cdot5) = 4\cdot 2a\cdot5[/tex]
To find : Which pair of expressions is equivalent using the Associative Property of Multiplication?
Solution :
Associative Property of Multiplication states that multiplication of group of numbers in any combination.
[tex]a\cdot(b\cdot c)=(a\cdot b)\cdot c[/tex]
On comparison with property,
[tex]4(2a\cdot5) = (4\cdot2a) \cdot5[/tex] satisfy the condition.
Where, a=4, b=2a and c=5.
Therefore, Option A is correct.
Answer:
The answer is A
Step-by-step explanation:
i took this exam