Respuesta :

[tex]\bf s=\cfrac{r\theta \pi }{180}\quad \begin{cases} r=radius\\ \theta=\textit{angle in degrees}\\ s=\textit{arc's length}\\ --------------\\ r=10\\ s=1 \end{cases} \\\\\\ 1=\cfrac{10\cdot \theta\cdot \pi }{180}\impliedby \textit{solve for }\theta[/tex]

Angle = 5.73°

The length of an arc formula is represented as follows:

length of arc = Ф / 360 × 2πr

where

Ф = angle

r = 10 ft

π = 3.14159

length of arc = 1 ft

Therefore,

1 = Ф / 360 × 2 × 3.14159 × 10

1 = 62.8318Ф / 360

cross multiply

360 =  62.8318Ф

Ф = 360 / 62.8318

Ф = 5.72958279088

Ф ≈ 5.73°

read more : https://brainly.com/question/16937067?referrer=searchResults