Respuesta :
[tex]\bf s=\cfrac{r\theta \pi }{180}\quad
\begin{cases}
r=radius\\
\theta=\textit{angle in degrees}\\
s=\textit{arc's length}\\
--------------\\
r=10\\
s=1
\end{cases}
\\\\\\
1=\cfrac{10\cdot \theta\cdot \pi }{180}\impliedby \textit{solve for }\theta[/tex]
Angle = 5.73°
The length of an arc formula is represented as follows:
length of arc = Ф / 360 × 2πr
where
Ф = angle
r = 10 ft
π = 3.14159
length of arc = 1 ft
Therefore,
1 = Ф / 360 × 2 × 3.14159 × 10
1 = 62.8318Ф / 360
cross multiply
360 = 62.8318Ф
Ф = 360 / 62.8318
Ф = 5.72958279088
Ф ≈ 5.73°
read more : https://brainly.com/question/16937067?referrer=searchResults