Answer: m∡2 = 106° .
________________________
Explanation:
________________
Note that: "∡2" and "∡3" are "supplementary angles"; as shown in the diagram; since both of them from a "straight line".
As such: " m∡2 + m∡3 = 180 " .
______________________________________________________
(Note: The definition of supplementary angles.).
______________________________________________________
We are given:
_____________________
m∡2 = 3x + 1 ;
___________________
m∡3 = 2x + 4 ;
___________________
We are to find:
__________________________
"m∡2" ; or, "(3x + 1").
__________________________
To begin:
___________________________
Since: "m∡2 + m∡3 = 180 " ;
___________________________
We need to plug in our given values for:
____________________________________
"m∡2" and "m∡3" ; and set the equation equal to "180";
and then "solve for "x" ;
____________________________________
m∡2 + m∡3 =
____________________________________
(3x + 1) + (2x +4) = 180 ;
____________________________________
3x + 1 + 2x + 4 = 180 ;
____________________________________
Combine the "like terms" on the left-hand side of the equation; to simplify:
_________________________________________________________
+3x +2x = 5x ;
___________________________________
+1 + 4 = 5 ;
___________________________________
And rewrite the equation as:
___________________________________
5x + 5 = 180 ;
___________________________________
Subtract "5" from EACH side of the equation:
____________________________________
5x + 5 − 5 = 180 − 5 ;
____________________________________
to get:
____________________________________
5x = 175 ;
_________________________________________________________
Now, divide EACH SIDE of the equation by "5" ;
to isolate "x" on one side of the equation; and to solve for "x" ;
____________________________________________
5x / 5 = 175 / 5 ;
____________________________________________
to get:
____________________________________________
x = 35 .
____________________________________________
Now, the question asks, "What is m∡2 ?"
____________________________________________
We are given:
____________________________________________
" m∡2 = 3x + 1 " ;
_________________________________________________
Since we know that "x = 35" (our solved value for "x");
we can plug in this value, "35" ;
for "x" ; in the expression given that represents " m∡2 " ;
to solve for " m∡2 " ;
_________________________________________________
m∡2 = 3x + 1 = 3*(35) + 1 = 105 + 1 = 106 .
_________________________________________________
The answer is: m∡2 = 106° .
_________________________________________________
Does this value make sense? Let us check our work:
________________________________________________
If "m∡2 + m∡3 = 180 ;
________________________________________________
then, " m∡3 = (180 − m∡2) = (180 −106) = 74 ;
________________________________________________
Does m∡3 = 174 ??
________________________________________________
We are given: "m∡3 = 2x + 4" ;
________________________________________________
Let us plug in our solved value, "35", for "x" in this expression;
to see if " m∡3 = 74 " ;
________________________________________________
m∡3 = 2x + 4 = 2*(35) + 4 = 70 + 4 = 74?? Yes!
___________________________________________________________