Respuesta :

dmks
Don't mind the top. The answer is 52
Ver imagen dmks
Answer:  m∡2 = 106°
________________________
Explanation:
________________

Note that:   "∡2"   and  "∡3"  are "supplementary angles"; as shown in the diagram;  since both of them from a "straight line".

As such:   " m∡2  + m∡3 = 180 " .  
______________________________________________________
(Note:  The definition of supplementary angles.).
______________________________________________________
We are given:
_____________________
 m∡2 = 3x + 1 ; 
___________________
 m∡3 = 2x + 4 ;
___________________
We are to find:  
__________________________
  "m∡2" ;  or, "(3x + 1").
__________________________
To begin:
___________________________
Since:  "m∡2  + m∡3 = 180 " ;
___________________________
We need to plug in our given values for:  
____________________________________ 
   "m∡2"   and   "m∡3" ; and set the equation equal to "180";
 and then "solve for "x" ;  
____________________________________
         m∡2  + m∡3  = 
____________________________________
        (3x + 1) + (2x +4) = 180 ;
____________________________________
         3x + 1  +  2x + 4  = 180 ;
____________________________________
  Combine the "like terms" on the left-hand side of the equation; to simplify:
_________________________________________________________
       +3x +2x = 5x ;
___________________________________
       +1  + 4 = 5 ;
___________________________________
 And rewrite the equation as:
___________________________________
    5x + 5 = 180 ;
___________________________________
Subtract "5" from EACH side of the equation:
____________________________________
    5x + 5 − 5 = 180 − 5 ;
____________________________________
to get: 
____________________________________
   5x   =  175 ;
_________________________________________________________
     Now, divide EACH SIDE of the equation by "5" ;
to isolate "x" on one side of the equation; and to solve for "x" ;
____________________________________________
   5x / 5  = 175 / 5 ;
____________________________________________
   to get:
____________________________________________
   x = 35 . 
____________________________________________
Now, the question asks, "What is m∡2 ?"
____________________________________________
 We are given:
____________________________________________
   " m∡2 = 3x + 1 " ;
_________________________________________________
         Since we know that "x = 35" (our solved value for "x"); 
we can plug in this value, "35" ;  
     for "x" ;  in the expression given that represents " m∡2 " ;
     to solve for " m∡2 " ;
_________________________________________________
   m∡2 = 3x + 1 = 3*(35)  + 1  = 105 + 1 = 106 .
_________________________________________________
 The answer is:  m∡2 = 106° .
_________________________________________________
Does this value make sense?  Let us check our work:
________________________________________________
 If  "m∡2  +  m∡3 = 180 ; 
________________________________________________
 then, " m∡3 = (180 − m∡2) = (180 106) = 74 ; 
________________________________________________
 Does  m∡3 = 174 ??
________________________________________________
We are given:  "m∡3 = 2x + 4" ;  
________________________________________________
Let us plug in our solved value, "35", for "x" in this expression;
   to see if  " m∡3 = 74 " ;
________________________________________________
   m∡3 = 2x + 4  = 2*(35) + 4 = 70 + 4 = 74??  Yes!
___________________________________________________________