Respuesta :
we know that
The volume of a cylinder is equal to
[tex]V=\pi r^{2} h[/tex]
where
r is the radius of the base of the cylinder
h is the height of the cylinder
In this problem we have
[tex]r=4\ in\\h=8\ in[/tex]
substitute the values in the formula
[tex]V=\pi 4^{2} 8=128 \pi\ in^{3}[/tex]
therefore
the answer is the option
[tex]128 \pi\ in^{3}[/tex]
The exact volume of the cylinder is [tex]\\ 128\pi[/tex]
The volume of a cylinder is calculated as:
[tex]V = \pi r^2h[/tex]
Given that:
Radius (r) = 4 inches
Height (h) = 8 inches
The equation becomes
[tex]V = \pi r^2h[/tex]
Substitute values for h and r
[tex]V = \pi * 4^2 * 8[/tex]
Evaluate the exponent
[tex]V = \pi * 16 * 8[/tex]
Evaluate the product
[tex]V = \pi * 128[/tex]
So, we have:
[tex]V = 128\pi[/tex]
Hence, the exact volume of the cylinder is [tex]\\ 128\pi[/tex]
Read more about volumes at:
https://brainly.com/question/9554871