The relationship between celcius and fahrenheit of measuring temp is linear. find a linear equation relating C and F if 0C corresponds to 32F and 100C corresponds to 212F. Use the equation to find the celcius measure of 70F?

Ok guys I'm stuck on this
I have attempted to do it myself and will display below what I have done
I paired it up
(0,32)
(100,212)
(x, 70)
so I tried finding the slop first
212-32/100-0 and got 9/5
then i just set it up as so
y = 9/5x -32
because the y-int is stated up to at (0,32) and "x" in this case represents Fahrenheit (F)
but my answer is wrong according to the book
what am i doing wrong?

Respuesta :

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 0}}\quad ,&{{ 32}})\quad % (c,d) &({{ 100}}\quad ,&{{ 212}}) \end{array} \\\quad \\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{9}{5} \\ \quad \\\\ % point-slope intercept y-{{ \underline{32}}}={{ \cfrac{9}{5}}}(x-{{ 0}})\implies y=\cfrac{9}{5}x+\underline{32}[/tex]

now... notice, your values are 0, 32  and 100, 212  for x, y
that means "x" is the Celsius and "y" is the Farenheit

--------------------------------------------------------------------------
[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 32}}\quad ,&{{ 0}})\quad % (c,d) &({{ 212}}\quad ,&{{ 100}}) \end{array} \\\quad \\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{5}{9} \\ \quad \\\\ % point-slope intercept y-0={{ \cfrac{5}{9}}}(x-{{ 32}})\implies y=\cfrac{5}{9}x-\cfrac{5\cdot 32}{9}+0 \\\\\\ y=\cfrac{5}{9}x-\cfrac{160}{9}[/tex]
--------------------------------------------------------------------------

now, let us solve the first equation for "x"

[tex]\bf y=\cfrac{9}{5}x+32\implies y-32=\cfrac{9}{5}x\implies 5y-160=9x \\\\ \cfrac{5y-160}{9}=x\implies \cfrac{5}{9}y-\cfrac{160}{9}=x[/tex]

so, you do end up with the same value, if you make"y" or "x" for the Farenheit