Respuesta :

Answer:

x=2 is our solution

Step-by-step explanation:

Given options:

x = −2


x = −1


x = 1


x = 2

Lets plug in each option and check with the given equation

[tex]\frac{2}{3} x+\frac{8}{3} =2^x[/tex]

Let plug in each option and check

(A) x=-2, plug in -2 for x

[tex]\frac{2}{3}(-2)+\frac{8}{3} = 2^{-2}[/tex]

[tex]\frac{-4+8}{3} =\frac{1}{2^2}[/tex]

[tex]\frac{4}{3} =\frac{1}{4}[/tex]

It is false, so x=-2 is not our solution

(B) x=-1, plug in -1 for x

[tex]\frac{2}{3}(-1)+\frac{8}{3} = 2^{-1}[/tex]

[tex]\frac{-2+8}{3} =\frac{1}{2^1}[/tex]

[tex]\frac{6}{3} =\frac{1}{2}[/tex]

[tex]2=\frac{1}{2}[/tex]

It is false, so x=-1 is not our solution

(C) x=1, plug in 1 for x

[tex]\frac{2}{3}(1)+\frac{8}{3} = 2^1[/tex]

[tex]\frac{2+8}{3} =2[/tex]

[tex]\frac{10}{3} =2[/tex]

It is false, so x=1 is not our solution

(D) x=2, plug in 2 for x

[tex]\frac{2}{3}(2)+\frac{8}{3} = 2^2[/tex]

[tex]\frac{4+8}{3} =4[/tex]

[tex]\frac{12}{3} =4[/tex]

4 = 4

It is true, so x=2 is our solution



Answer:

x=2

Step-by-step explanation:

I did the test