Data:
v (volume) = ?
h (height) = 10 m
r (radius) = 5 m
Adopting: [tex] \pi \approx 3.14[/tex]
Formula:
[tex]V = h* \pi *r^2[/tex]
Solving:
[tex]V = h* \pi *r^2[/tex]
[tex]V = 10*3.14*5^2[/tex]
[tex]V = 10*3.14*25[/tex]
[tex]\boxed{V=785\:m^3}}\end{array}[/tex]
If:
785 m³ → 100%
y m³ → 75%
Solving: Rule of three (directly proportional)
[tex] \frac{785}{y} = \frac{100}{75} [/tex]
multiply cross
[tex]100*y = 785*75[/tex]
[tex]100y = 58875[/tex]
[tex]y = \frac{58875}{100} [/tex]
[tex]\boxed{\boxed{y = 588.75\:m^3}}\end{array}}\qquad\quad\checkmark[/tex]
Answer:
The volume of water that the tank contains when it is 75% full is 588.75 m³