Answer:
[tex]y=x-5[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{4.4cm}\underline{Slope Formula}\\\\Slope $(m)=\dfrac{y_2-y_1}{x_2-x_1}$\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ \\are two points on the line.\\\end{minipage}}[/tex]
Given points:
Substitute the given points into the slope formula to find the slope of the line:
[tex]\implies m=\dfrac{-2-(-1)}{3-4}=\dfrac{-1}{-1}=1[/tex]
[tex]\boxed{\begin{minipage}{5cm}\underline{Point-slope Formula}\\\\$y-y_1=m(x-x_1)$\\\\where $m$ is the slope and\\ $(x_1,y_1)$ is a point on the line.\\\end{minipage}}[/tex]
Substitute the found slope and the point (4, -1) into the point-slope formula to create the equation of the line:
[tex]\implies y-(-1)=1(x-4)[/tex]
[tex]\implies y+1=x-4[/tex]
[tex]\implies y+1-1=x-4-1[/tex]
[tex]\implies y=x-5[/tex]