Answer:
See below.
Step-by-step explanation:
Corresponding Angles Postulate
When a straight line intersects two parallel straight lines, the resulting corresponding angles are congruent.
[tex]\begin{array}{c|c}\sf Statement & \sf Reason\\\cline{1-2} BC \parallel EF & \phantom{\dfrac11}\sf Given\\\\\angle 2=\angle 3 & \textsf{Corresponding Angles Postulate}\\\\\angle 1=\angle 3 & \sf Given\\\\\angle 1=\angle 2 & \textsf{Transitive property of equality}\\&(\angle 2=\angle 3 \; \textsf{and} \; \angle 1=\angle 3)\\\\AB \parallel DE & \textsf{Corresponding Angles Postulate}\\& \textsf{as} \;\angle 1=\angle 2\end{array}[/tex]
As DE intersects the two parallel lines BC and EF, ∠2 is congruent to ∠3 (corresponding angles postulate).
As ∠1 = ∠3 and ∠2 = ∠3, then ∠1 = ∠2 (transitive property of equality).
Therefore, as ∠1 and ∠2 are congruent, AB and DE must be parallel (BC is the transversal).