I have one fair 6-sided die and one unfair 6-sided die. On the unfair die, the probabilities of rolling numbers 2,…,6 are equal and the probability of rolling a 1 has a different value. I roll each die once.

If the probability of rolling one 3 and one 4 is 1/24, what is the probability of rolling two 1’s?

Respuesta :

Answer:

[tex]\dfrac{1}{16}[/tex]

Step-by-step explanation:

Probability Distribution Table for X

Where X is the score on a fair, six-sided dice:

[tex]\begin{array}{|c|c|c|c|c|c|c|}\cline{1-7} x & 1 & 2 & 3 & 4 & 5 & 6\\\cline{1-7} \text{P}(X=x) \phantom{\dfrac11}&\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\\cline{1-7}\end{array}[/tex]

Probability Distribution Table for Y

Where Y is the score on an unfair, six-sided dice, and the probabilities of rolling numbers 2, 3, 4, 5 and 6 are equal, and the probability of rolling a 1 has a different value:

[tex]\begin{array}{|c|c|c|c|c|c|c|}\cline{1-7} y & 1 & 2 & 3 & 4 & 5 & 6\\\cline{1-7} \text{P}(Y=y) \phantom{\dfrac11}&1-5k&k&k&k&k&k\\\cline{1-7}\end{array}[/tex]

Note:  The probabilities of all the possible values that a discrete random variable can take add up to 1.

The outcomes of rolling one 3 and one 4 are:

  • Rolling a 3 with the first die and a 4 with the second die, OR
  • Rolling a 4 with the first die and a 3 with the second die.

Given the probability of rolling one 3 and one 4 is ¹/₂₄:

[tex]\implies \text{P}(X=3)\; \text{and} \; \text{P}(Y=4) \; \text{or} \; \; \text{P}(X=4) \; \; \text{and} \; \; \text{P}(Y=3)=\dfrac{1}{24}[/tex]

[tex]\implies \dfrac{1}{6} \times k +\dfrac{1}{6} \times k=\dfrac{1}{24}[/tex]

[tex]\implies \dfrac{k}{6} + \dfrac{k}{6}=\dfrac{1}{24}[/tex]

[tex]\implies \dfrac{2k}{6}=\dfrac{1}{24}[/tex]

[tex]\implies 24(2k)=6[/tex]

[tex]\implies 48k=6[/tex]

[tex]\implies k=\dfrac{1}{8}[/tex]

Therefore:

[tex]\implies 1-5k=1-\dfrac{5}{8}=\dfrac{3}{8}[/tex]

Hence, the probability distribution table for the unfair 6-sided dice is:

[tex]\begin{array}{|c|c|c|c|c|c|c|}\cline{1-7} y & 1 & 2 & 3 & 4 & 5 & 6\\\cline{1-7} \text{P}(Y=y) \phantom{\dfrac11}&\frac{3}{8} & \frac{1}{8} & \frac{1}{8}& \frac{1}{8} & \frac{1}{8}& \frac{1}{8} \\\cline{1-7}\end{array}[/tex]

There is only one possible outcome of rolling two 1's, so the probability of rolling two 1's is:

[tex]\implies \text{P$(X=1)$ and P$(Y=1)$}=\dfrac{1}{6}\times\dfrac{3}{8}=\dfrac{3}{48}=\dfrac{1}{16}[/tex]

Note:  Please see attachment for the sample-space diagram showing the possible outcomes of rolling two dice. The possible outcomes of rolling one 3 and one 4 are highlighted in yellow. The possible outcome of rolling two 1's is highlighted in blue.

Ver imagen semsee45