Respuesta :

w³ + 64 = w³ + 4³ = (w+4)³ - 3*w*4(w+4) = (w+4)[(w+4)² - 12w]

(w³ + 64) ÷ (w+4)
=(w+4)[(w+4)² - 12w] ÷ (w+4)
= (w+4)² - 12w
= w² -4w + 16

Answer:

The expression [tex]\frac{\left(w^3+64\right)}{w+4}[/tex] becomes [tex]w^2-4w+16[/tex]

Step-by-step explanation:

Given : Expression [tex]\frac{\left(w^3+64\right)}{w+4}[/tex]

We have to find the simplified value of given expression.

Consider the given expression  [tex]\frac{\left(w^3+64\right)}{w+4}[/tex]

Rewrite 64 as [tex]4^3[/tex]

[tex]=w^3+4^3[/tex]

[tex]\mathrm{Apply\:Sum\:of\:Cubes\:Formula:\:}x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)[/tex]

[tex]w^3+4^3=\left(w+4\right)\left(w^2-4w+4^2\right)[/tex]

Simplify,

[tex]=\left(w+4\right)\left(w^2-4w+4^2\right)[/tex]

Given expression becomes,

[tex]=\frac{\left(w+4\right)\left(w^2-4w+16\right)}{w+4}[/tex]

Cancel common factors, we have,

[tex]=w^2-4w+16[/tex]

Thus, The expression [tex]\frac{\left(w^3+64\right)}{w+4}[/tex] becomes [tex]w^2-4w+16[/tex]