Using the given sample data, calculate the following measures of dispersion, to one decimal place.

Range = 15
Variance = 24.5Explanations
Standard deviation = 5.0
The formula for calculating the range is expressed as:
Range = Highest value - Lowest value
Range = 24 - 9
Range = 15
Calculate the variance
The formula for calculating the variance is expressed as:
[tex]Variance=\frac{\sum(x-\overline{x})^2}{n-1}[/tex]Find the mean
[tex]\begin{gathered} mean=\frac{9+13+15+18+19+20+24}{7} \\ mean\text{ }\overline{x}=\frac{118}{7}=16.9 \end{gathered}[/tex]Determine the variance
[tex]\begin{gathered} S^2=\frac{(9-16.9)^2+(13-16.9)^2+(15-16.9)^2+(18-16.9)^2+(19-16.9)^2+(20-16.9)^2+(24-16.9)^2}{7-1} \\ S^2=\frac{146.9}{6} \\ S^2\approx24.5 \end{gathered}[/tex]Determine the standard deviation
[tex]\begin{gathered} S=\sqrt{variance} \\ S=\sqrt{24.5} \\ S\approx5.0 \end{gathered}[/tex]