Respuesta :

Solution:

The equation of the ellipse in the question is given as

[tex]\frac{(y-3)^2}{9}-\frac{(x-3)^2}{9}=1[/tex]

Concept:

The general formula of a hyperbola is

[tex]\begin{gathered} \frac{(y-h)^2}{b^2}-\frac{(x-k)^2}{a^2}=1 \\ \text{Where } \\ h,k\text{ are the centres} \end{gathered}[/tex]

From the above equation by comparing coeficient, we will have

[tex]\begin{gathered} a^2=9 \\ a=3 \\ b^2=9 \\ b=3 \\ (a,b)\Rightarrow(3,3) \\ h=3,k=3 \end{gathered}[/tex]

The linear eccentricity c, will be

[tex]\begin{gathered} c=\sqrt[]{a^2+b^2} \\ c=\sqrt[]{3^2+3^2} \\ c=\sqrt[]{9+9} \\ c=\sqrt[]{18} \\ c=3\sqrt[]{2} \end{gathered}[/tex]

The vertices of the hyperbola will be calculate using the formula below

[tex]\begin{gathered} (h,k-b)\Rightarrow(3,3-3)\Rightarrow(3,0) \\ (h,h+b)\Rightarrow(3,3+3)\Rightarrow(3,6) \end{gathered}[/tex]

The co-vertex are calculated using the formula below

[tex]\begin{gathered} (h-a,k)\Rightarrow(3-3,3)\Rightarrow(0,3) \\ (h+a,k)\Rightarrow(3+3,3)\Rightarrow(6,3) \end{gathered}[/tex]

The foci of the hyperbola will be calculated using the formula below

[tex]\begin{gathered} \mleft(h,k-c\mright)\Rightarrow(3,3-3\sqrt[]{2)} \\ \mleft(h,k+c\mright)\Rightarrow\Rightarrow\Rightarrow\mleft(3,3+3\sqrt[]{2}\mright) \end{gathered}[/tex]

The eccentricity, e is

[tex]e=\frac{c}{b}=\frac{3\sqrt[]{2}}{3}=\sqrt[]{2}[/tex]

Hence,

The sketch of the graph is given below as

The foci is represented with the two red dots on the graph

The vertices are represented above by the two coordinates

Ver imagen ksideidjjdjf9513
Ver imagen ksideidjjdjf9513
Ver imagen ksideidjjdjf9513
Ver imagen ksideidjjdjf9513