Respuesta :

Given

[tex]y=x^2-6x+8[/tex]

To obtain the minimum value of y, we first take the derivative of y

The derivative of y is:

[tex]y^{\prime}=2x-6[/tex]

Equating

[tex]y^{\prime}\text{ = 0}[/tex]

gives the minimum value we require.

Doing that, we have:

[tex]2x-6=0[/tex]

So that

[tex]\begin{gathered} 2x=6 \\ x=\frac{6}{2} \\ =3 \end{gathered}[/tex]

Therefore, the minimum value is x = 3