Respuesta :

STEP - BY - STEP EXPLANATION

What to find?

Determine how much greater the average rate of change over the interval [ 7, 9] than the interval [4, 6].

Given:

Step 1

Calculate the average rate of change over the interval [ 7, 9] using the formula below:

[tex]Rate\text{ of change=}\frac{f(b)-f(a)}{b-a}[/tex]

a= 7 f(a)=1852

b=9 f(b)=3878

Substitute the values into the formula and simplify.

[tex]Average\text{ rate of change=}\frac{3878-1852}{9-7}[/tex][tex]=\frac{2026}{2}=1013[/tex]

Step 2

Calculate the average rate of change over the interval [4, 6] using the same formula in step 2.

a=4 f(a)=358

b=6 f(b)=1178

[tex]average\text{ rate of change=}\frac{1178-358}{6-4}[/tex][tex]=\frac{820}{2}=410[/tex]

Step 3

Compare the average rate of change over the two intervals.

Clearly, the average rate of change over the the interval [7, 9] is greater than the average rate of change over the interval [4, 6].

ANSWER

T

Ver imagen nwjkbdwdnjkw12418