Step 1: Write out the formula for logistic growth model
[tex]P(t)=\frac{KP_0e^{rt}}{K+P_0(e^{rt}-1)}[/tex][tex]\begin{gathered} \text{ Where} \\ K=\text{ the carrying capacity} \\ r=\text{ the growth rate (in decimal form)} \\ P_0=\text{ the initial population} \\ P(t)=\text{ the population at time t} \end{gathered}[/tex]
Step 2: Write out the given values and substitute them into the formula
[tex]\begin{gathered} \text{ In this case,} \\ K=120 \\ r=\frac{90}{100}=0.9 \\ P_0=17 \\ t=5 \end{gathered}[/tex]
Hence,
[tex]P(5)=\frac{120\times17\times e^{(0.9\times5)}}{120+17(e^{(0.9\times5)}-1)}[/tex]
[tex]P(5)=112[/tex]
Hence, the number of plants after 5 months is approximately 112