Respuesta :

Given -

a = 2.5 cm

b = 3.6 cm

∠A = 43°

To Find -

Remaining angles and sides =?

Step-by-Step Explanation -

We will start by drawing the diagram:

Now, we know

By, sine rule:

[tex]\begin{gathered} \frac{\sin A}{a}\text{ =}\frac{\sin B}{b}=\frac{\sin C}{c} \\ \\ =\text{ }\frac{\sin43}{2.5}\text{ = }\frac{\sin C}{3.6} \\ \\ =\text{ }\sin C\text{ = }\frac{3.6\times\sin44}{2.5} \\ \\ =\text{ }\sin C\text{ = 0.9820} \\ \\ C\text{ = }\sin^{-1}(0.9820) \\ \\ C\text{ = 79} \\ \end{gathered}[/tex]

Now, we know N

A + B + C = 180 c°°

43 + B + 79° = 180°°

B = 180° - 799 - 43°°

B = 58°

Now, Side b =

[tex]\begin{gathered} \frac{\sin A}{a}\text{ = }\frac{\sin B}{b} \\ \\ \frac{\sin43}{2.5}\text{ = }\frac{\sin58°}{b} \\ \\ b\text{ = }\frac{2.5\times\sin58°}{\sin43°} \\ \\ b\text{ = 3.1} \end{gathered}[/tex]

Final Answer -

∠B = 58B°

∠C = 797°

Side, b = 3.1 cm

Ver imagen maddy10660