Respuesta :

Explanation:

The question involves dividing radicals

To resolve the question, we will follow the steps below

Step 1: Write the expression

[tex]\sqrt{50x^3}\div\sqrt{32x^2}[/tex]

Step 2: simplify the expression in parts and apply the laws

[tex]\begin{gathered} \sqrt{50x^3}=\sqrt{25\times2\times x^2\times x} \\ =\sqrt{25\times2\times x^2\times x}=\sqrt{5^2\times2\times x^2\times x}=\sqrt{5^2}\times\sqrt{x^2}\times\sqrt{2x} \end{gathered}[/tex]

Thus

[tex]\begin{gathered} \sqrt{50x^3}=\sqrt{5^2}\times\sqrt{x^2}\times\sqrt{2x}=5\times x\times\sqrt{2x} \\ Therefore \\ \sqrt{50x^3}=5x\sqrt{2x} \end{gathered}[/tex]

For the second part

[tex]\sqrt{32x^2}=\sqrt{16\times2\times x^2}[/tex]

simplifying further

[tex]\sqrt{16\times2\times x^2}=\sqrt{16}\times\sqrt{x^2}\times\sqrt{2}[/tex]

Hence, we have

[tex]\sqrt{16}\times\sqrt{x^2}\times\sqrt{2}=4\times x\times\sqrt{2}=4x\sqrt{2}[/tex]

Finally, we will combine the simplified terms, so that we will have

[tex]\sqrt{50x^3}\div\sqrt{32x^2}=5x\sqrt{2x}\div4x\sqrt{2}[/tex]

Hence, we will have

[tex]\frac{5x\sqrt{2x}}{4x\sqrt{2}}=\frac{5}{4}\times\frac{x}{x}\times\frac{\sqrt{2}}{\sqrt{2}}\times\frac{\sqrt{x}}{1}[/tex]

By canceling out the common parts, we will have the answer to be

[tex]\frac{5}{4}\sqrt{x}[/tex]