Respuesta :
Answer:
24 times.
Step-by-step explanation:
Since, the volume of a cone,
[tex]V=\frac{1}{3}\pi r^2 h[/tex]
While, the volume of a cylinder,
[tex]V=\pi r^2 h[/tex]
Where, r = radius,
h = height,
Thus, the volume of the cone having radius 5 cm and height 10 cm,
[tex]V_1=\frac{1}{3}\pi (5)^2(10)[/tex]
And, the volume of the cylinder having radius 10 cm, and 20 cm,
[tex]V_2=\pi (10)^2 (20)[/tex]
Hence, the number of times we need to use cone to completely fill the cylinder = [tex]\frac{V_2}{V_1}[/tex]
[tex]=\frac{\pi (10)^2 (20)}{\frac{1}{3}\pi (5)^2(10)}[/tex]
[tex]=\frac{2000}{250/3}[/tex]
[tex]=\frac{6000}{250}[/tex]
[tex]=24[/tex]