Respuesta :
first, find Δt
Δt= velocity÷acceleration
⇔(0-7)÷(-2.5)
⇔2.8 seconds.
replace it in ΔX=1/2aΔt^2+viΔt
⇔ ΔX= 1/2(-2.5)(2.8)^2+7(2.8)
⇔9.8m
Δt= velocity÷acceleration
⇔(0-7)÷(-2.5)
⇔2.8 seconds.
replace it in ΔX=1/2aΔt^2+viΔt
⇔ ΔX= 1/2(-2.5)(2.8)^2+7(2.8)
⇔9.8m
Answer:
The distance is 9.8 m.
Explanation:
Given that,
Acceleration = -2.5 m/s²
Initial speed = 7 m/s
We need to calculate the time
Using equation of motion
[tex]v = u+at[/tex]
[tex]t=\dfrac{v-u}{a}[/tex]
Where, v = final velocity
u = initial velocity
t = time
a = acceleration
Put the value into the formula
[tex]t =\dfrac{0-7}{-2.5}[/tex]
[tex]t=2.8\ sec[/tex]
We need to calculate the distance
Using equation of motion
[tex]s=ut+\dfrac{1}{2}at^2[/tex]
[tex]s=7\times2.8-\dfrac{1}{2}\times2.5\times(2.8)^2[/tex]
[tex]s=9.8\ m[/tex]
Hence, The distance is 9.8 m.