Respuesta :

we have

[tex]64^{\frac{1}{4}}[/tex]

we know that

[tex]64=2^{6}= 2^{2}*2^{4}[/tex]

so

[tex]64^{\frac{1}{4}}=\sqrt[4]{64} \\ \\\sqrt[4]{64} =\sqrt[4]{2^{2}*2^{4}}[/tex]

[tex]\sqrt[4]{2^{2}*2^{4}}=2\sqrt[4]{2^{2}}= 2\sqrt[4]{4}[/tex]

therefore

the answer is the option

[tex]2\sqrt[4]{4}[/tex]

The equivalent expression of [tex]64^\frac 14[/tex] is [tex]2 \sqrt[4]{4}[/tex]

What are equivalent expressions?

Equivalent expressions are expressions that have equal values, when compared

How to determine the equivalent expression?

The expression is given as:

[tex]64^\frac 14[/tex]

Express 64 as the product of 16 and 4

[tex](16 * 4)^\frac 14[/tex]

Take the fourth root of 16

[tex]2 * (4)^\frac 14[/tex]

Express 4^1/4 as a root expression

[tex]2 * \sqrt[4]{4}[/tex]

Evaluate the product of 2 and the radical expression

[tex]2 \sqrt[4]{4}[/tex]

Hence, the equivalent expression of [tex]64^\frac 14[/tex] is [tex]2 \sqrt[4]{4}[/tex]

Read more about equivalent expression at:

https://brainly.com/question/2972832

#SPJ5