Respuesta :
the discriminant D of the equation 3g² + 15g + 10 = 0
for a quadratic equation ax²+bx+c=0
the discriminant D is D= b²-4xaxc
so for 3g² + 15g + 10 = 0 D=15²- 4x3x10=125-120=5, so D=5
for a quadratic equation ax²+bx+c=0
the discriminant D is D= b²-4xaxc
so for 3g² + 15g + 10 = 0 D=15²- 4x3x10=125-120=5, so D=5
Answer:
The value of discriminant D for the given equation is 105.
Step-by-step explanation:
The given equation is
[tex]3g^2+15g+10=0[/tex] .... (1)
If a quadratic function is defined as
[tex]ax^2+bx+c=0[/tex] .... (2)
then the discriminant D is
[tex]D=b^2-4ac[/tex]
On comparing (1) and (2), we get
[tex]a=3,b=15,c=10[/tex]
The value of discriminant D is
[tex]D=15^2-4(3)(10)[/tex]
[tex]D=225-120[/tex]
[tex]D=105[/tex]
Therefore the value of discriminant D for the given equation is 105.