Respuesta :

let us, do the right-hand-side

[tex]\bf csc(x)+cot(x)\qquad \begin{cases} cot(\theta)=\cfrac{cos(\theta)}{sin(\theta)} \\\\ % cosecant csc(\theta)=\cfrac{1}{sin(\theta)} \end{cases}\qquad thus \\\\\\ \cfrac{1}{sin(x)}+\cfrac{cos(x)}{sin(x)}\implies \cfrac{1+cos(x)}{sin(x)} \\\\\\ thus\implies 1+\cfrac{cos(x)}{sin(x)}\ne csc(x)+cot(x)[/tex]
=1/sin x + cos x/sin x
= csc x + cot x