This is given by the limit
[tex]\displaystyle \lim_{x\to1} \frac{f(x) - f(1)}{x - 1} = \lim_{x\to1} \frac{(2x^2 - 5x+1) - (-2)}{x - 1} = \lim_{x\to1} \frac{2x^2 - 5x + 3}{x - 1}[/tex]
Observe that [tex]2x^2-5x+3=0[/tex] when [tex]x=1[/tex], and factorizing gives
[tex]2x^2 - 5x + 3 = (x - 1) (2x - 3)[/tex]
so that
[tex]\displaystyle \lim_{x\to1} \frac{f(x) - f(1)}{x - 1} = \lim_{x\to1} (2x-3) = 2\cdot1 - 3 = \boxed{-1}[/tex]
(A)