If [tex]X,Y[/tex] are independent, we have the properties for expectation and variance,
[tex]\Bbb E[aX + bY] = a\,\Bbb E[X] + b\,\Bbb E[Y][/tex]
[tex]\Bbb V[aX + bY] = a^2\,\Bbb V[X] + b^2\,\Bbb V[Y][/tex]
where [tex]a,b\in\Bbb R[/tex] are fixed.
Then
[tex]\Bbb E[R - S] = \Bbb E[R] - \Bbb E[S] = 10 - 7 = \boxed{3}[/tex]
and
[tex]\Bbb V[R - S] = \Bbb V[R] + (-1)^2\, \Bbb V[S] = 4^2 + 3^2 = \boxed{5}\,{}^2 = 25[/tex]
(recall that standard deviation = √(variance))