X1 = 3, X2 = 5
Y1 = 4, Y2 = 6
Using the distance formula:
[tex] \sqrt{(X2 - X1 {)}^{2} + (Y2 - Y1 {)}^{2} } [/tex]
Replace for the values.
[tex]\sqrt{(5 - 3 {)}^{2} + (6 - 4 {)}^{2} } [/tex]
[tex]→ \sqrt{(2 {)}^{2} + (2 {)}^{2} } [/tex]
[tex]→ \sqrt{4 + 4} = \sqrt{8} [/tex]
[tex]→ \sqrt{8} = \sqrt{4 \times 2} \\→4 \sqrt{2} = 2 \sqrt{2} [/tex]
Therefore: [tex]2 \sqrt{2} [/tex] is the final answer.