Respuesta :

The value of x = 16, y = 172 and z = 2.

x - 4z = 12x - y - 6z = 42x + 3y - 2z = 8

let x - 4z = 8 be equation (1), 12x - y - 6z = 8 be equation (2) and 42x + 3y - 2z = 8 be equation (3)

x - 4z = 8

x = 8 + 4z

12x - y - 6z = 8

12(8 + 4z) -y - 6z =8

96 + 48z - y - 6z = 8

42z - y = -88

y = 42z + 88

42x + 3y - 2z = 8

42(8+4z) + 3(42z + 88) - 2z = 8

336 + 168z + 126z + 264 - 2z = 8

168z + 126z + 2z = 336+264 - 8

296z= 592

z = 2

substituting the value of z

x = 8 + 4z

= 8 + 4(2)

8+8 = 16

y = 42z + 88

42(2) + 88

84 + 88= 172

The value of x = 16, y = 172 and z = 2.

To learn more about algebraic equation refer here

https://brainly.com/question/13729904

#SPJ9