consider a uniformly charged ring in the xy plane, centered at the origin. the ring has radius aaa and positive charge qqq distributed evenly along its circumference.

Respuesta :

Ez = kqz / (z^2+a^2)^3/2 is the answer.

The expression of the electric field is,

E=kq / r^2

Here, r is the distance and its value is [tex]\sqrt{z^2 + a^2}[/tex]

Substitute the value of r in the above expression.

E=kq /  [tex]\sqrt{z^2 + a^2}[/tex]^2

The expression of the electric field along the z-direction is given by,

dEz=dEcos[tex]\int\limits {dEcosθ} \,[/tex]

Here, the value of the cosine function is z /  [tex]\sqrt{z^2 + a^2}[/tex]

On integrating the above expression and substituting the value

[tex]\int\limits{dEz} \,[/tex] =[tex]\int\limits{dEcosθ}[/tex]

Ez = Ecosθ

Ez = kq /  [tex]\sqrt{z^2 + a^2}[/tex]^2 *  z /  [tex]\sqrt{z^2 + a^2}[/tex]

Ez = kqz / (z^2+a^2)^3/2

For more information on charged ring click on the link below:

https://brainly.com/question/15128737

#SPJ4