Ez = kqz / (z^2+a^2)^3/2 is the answer.
The expression of the electric field is,
E=kq / r^2
Here, r is the distance and its value is [tex]\sqrt{z^2 + a^2}[/tex]
Substitute the value of r in the above expression.
E=kq / [tex]\sqrt{z^2 + a^2}[/tex]^2
The expression of the electric field along the z-direction is given by,
dEz=dEcos[tex]\int\limits {dEcosθ} \,[/tex]
Here, the value of the cosine function is z / [tex]\sqrt{z^2 + a^2}[/tex]
On integrating the above expression and substituting the value
[tex]\int\limits{dEz} \,[/tex] =[tex]\int\limits{dEcosθ}[/tex]
Ez = Ecosθ
Ez = kq / [tex]\sqrt{z^2 + a^2}[/tex]^2 * z / [tex]\sqrt{z^2 + a^2}[/tex]
Ez = kqz / (z^2+a^2)^3/2
For more information on charged ring click on the link below:
https://brainly.com/question/15128737
#SPJ4