Respuesta :

Inverse of the give function F(x) = √2 x + 1 is F⁻¹(x) = ( x - 1 ) / √2

Given is a function of x, F(x) = √2 x + 1

These question can be solved by following 4 easy steps

Step 1 : Switch the F(x) with the variable y

This implies, F(x) = √2 x + 1 becomes y = √2 x + 1

Step 2 : Interchange the variable x and y in the above obtained equation

This implies, from the equation y = √2 x + 1, we get

x = √2 y + 1

Step 3 : Solve the new obtained equation for y

This implies, we have to simplify the equation by rearranging the terms to get the equation in terms of the variable x.

x = √2 y + 1

=> x - 1 = √2 y

=> √2 y = x - 1

=> y = ( x - 1 ) / √2

Hence we obtain the required equation.

Step 4 : Switch the variable y with F⁻¹(x)

This implies, y = ( x - 1 ) / √2 becomes F⁻¹(x) = ( x - 1 ) / √2

Therefore, we get the inverse of the give function F(x) = √2 x + 1 as F⁻¹(x) = ( x - 1 ) / √2.

Learn more about Inverse of a Function here:

https://brainly.com/question/2541698?referrer=searchResults

#SPJ9