Respuesta :

ayune

The sum of the finite series  [tex]\sum\limits^{8}_{n=1} {(7-n)}[/tex]  is 20

Given a finite series:

[tex]\sum\limits^{8}_{n=1} {(7-n)}[/tex]

Recall the properties of summation notation:

Σₙ b. f(n) = b Σₙ f(n) where b is a constant.

Σ (a + b) = Σ a +  Σ b

[tex]\sum\limits^p_{n=1} {b} =b.p[/tex]  where b is a constant

Using the above summation properties, we can write:

[tex]\sum\limits^{8}_{n=1} {(7-n)}=\sum\limits^{8}_{n=1} {7}-\sum\limits^{8}_{n=1} {n}[/tex]

=7 . 8 - (1+2+3+ ...+8)

= 56 - 8/2 (1+8)

= 56 - 4 . 9

= 56 - 36 = 20

Learn more about finite series here:

https://brainly.com/question/9412493

#SPJ4