Respuesta :

ayune

The summation notation for the series 500+490+480+ . . . . . . . +20+10 is

[tex]25500-10\sum\limits^{50}_{n=1} {n}[/tex]

A summation notation is used to express a long summation into a single notation.

The given series is:

    500+490+480+ . . . . . . . +20+10

This is an arithmetic series with:

a(1) = 500, and

d = 490 - 500 = -10

The last term is a(n) = 10. Find n first by using the nth term formula of an arithmetic sequence:

a(n) = a(1) + (n-1) . d

10 = 500 + (n-1) . (-10)

10 = 500 -10n + 10

10 n = 500

n = 50

Write the explicit formula for the nth term:

a(n) = a(1) + (n-1) . d

a(n) = 500 + (n-1) . (-10)

a(n) = 500 -10n + 10

a(n) = 510 - 10n

The series is the summation notation from n=1 to n = 50

[tex]=\sum\limits^{50}_{n=1} {a(n)}[/tex]

[tex]=\sum\limits^{50}_{n=1} {(510-10n)}[/tex]

[tex]=\sum\limits^{50}_{n=1} {510} -\sum\limits^{50}_{n=1} {10n}[/tex]

[tex]=510\times50-10\sum\limits^{50}_{n=1} {n}[/tex]

[tex]=25500-10\sum\limits^{50}_{n=1} {n}[/tex]

Learn more about summation notation of a series here:

https://brainly.com/question/23742399

#SPJ4