The car's vertical position [tex]y[/tex] at time [tex]t[/tex] is
[tex]y = 63\,\mathrm m - \dfrac12 gt^2[/tex]
since it starts 63 m above the ground, and after leaving the cliff it accelerates downward due to gravity.
Its horizontal position [tex]x[/tex] is
[tex]x = \left(29\dfrac{\rm m}{\rm s}\right) t[/tex]
since the car leaves the cliff horizontally at 29 m/s, and is not influenced by any other acceleration in this plane.
1. Solve for [tex]t[/tex] such that [tex]y=0[/tex].
[tex]63\,\mathrm m - \dfrac12 gt^2 = 0 \implies t = \sqrt{\dfrac{126\,\rm m}g} \approx \boxed{3.6}\,\rm s[/tex]
2. Solve for [tex]x[/tex] at this value of [tex]t[/tex].
[tex]x = \left(29\dfrac{\rm m}{\rm s}\right) \sqrt{\dfrac{126\,\rm m}g} \approx 104\,\rm m \approx \boxed{100}\,\rm m[/tex]