Respuesta :

Answer:

x = 2, x = -6

Step-by-step explanation:

Given quadratic function in vertex form:

[tex]f(x)=(x+2)^2-16[/tex]

The zeros of a function occur when f(x) = 0:

[tex]\implies (x + 2)^2 - 16 = 0[/tex]

Add 16 to both sides:

[tex]\implies (x + 2)^2 - 16+16 = 0+16[/tex]

[tex]\implies (x + 2)^2 =16[/tex]

Square root both sides:

[tex]\implies \sqrt{ (x + 2)^2} =\sqrt{16}[/tex]

[tex]\implies x+2= \pm 4[/tex]

Subtract 2 from both sides:

[tex]\implies x+2-2= -2 \pm 4[/tex]

[tex]\implies x= -2 \pm 4[/tex]

Therefore:

[tex]\implies x=-2+4=2[/tex]

[tex]\implies x=-2-4=-6[/tex]

The zeros of the given quadratic function are x = 2, x = -6.