Respuesta :

The interval forms of the inequations are: a) x ∈ (20.5, + ∞), b) t ∈ (- ∞, 102], c) y ∈ (- ∞, - 8) ∪ (6, + ∞).

The simplified forms of the radical expressions are: a) m³ · n⁴, b) - 2√(2 · a), c) 3∛ 2 / 20.

How to analyze and modify inequalities and radical expressions

In the first part of this question we must transform inequalities into interval notation:

a) x > 20.5, inequalities of the form x > a are equivalent to x ∈ (a, + ∞). Thus, x > 20.5 is equivalent to x ∈ (20.5, + ∞).

b) t ≤ 102, inequalities of the form t ≤ a are equivalent to t ∈ (- ∞, a]. Thus, t ≤ 102 is equivalent to t ∈ (- ∞, 102].

c) y ≥ 6 or y ≤ - 8, the conditional "or" used in logics is equivalent to the operator ∪ used in set theory. Thus, y ≥ 6 or y ≤ - 8 is equivalent to y ∈ (- ∞, - 8) ∪ (6, + ∞).

The second part of this questions consists in simplifying radical expressions by algebraic handling:

  1. ∛(m⁹ · n¹²)
  2. m³ · n⁴
  1. 3√(2 · a) - √(8 · a) - √(18 · a)
  2. √9 · [√2 · √a] - √8 · √a - √18 · √a
  3. √18 · √a - √8 · √a - √18 · √a
  4. [√18 · √a - (√18 · √a)] - √8 · √a
  5. (√18 - √18) · √a - √8 · √a
  6. 0 · √a - √8 · √a
  7. (0 - √8) · √a
  8. - √8 · √a
  9. - 2√2 · √a
  10. - 2√(2 · a)
  1. 3∛250 / 100
  2. 3∛(2 · 125) / 100
  3. 3∛2 · (5 / 100)
  4. 3∛2 · (1 / 20)
  5. 3∛ 2 / 20

To learn more on inequalities: https://brainly.com/question/20383699

#SPJ1