Respuesta :

Answer:

290 cm²

Step-by-step explanation:

Area of regular hexagon-based pyramid.

First find the area of 6 triangles and then the area of the regular hexagon.

          Slant height = s = 15 cm

                       side = b  = 5 cm

[tex]\sf Area \ of \ triangle = \dfrac{1}{2}*b* s\\\\Area \ of \ 6 \ triangle = 6*\dfrac{1}{2}*b*s\\\\[/tex]

                            = 3 bs

                             = 3 * 5 * 15

                             = 225 cm²

[tex]\sf Area \ of \ regular \ hexagon = \dfrac{3\sqrt{3}b^2}{2}\\\\[/tex]

                                     [tex]\sf =\dfrac{3*1.732*5*5}{2}\\\\= 64.95 \ cm^2[/tex]

Area of regular hexagon based polygon = Area of 6 triangles + area of regular hexagon

                                                                   = 225 + 64.95

                                                                   = 289.95

                                                                    = 290.0 cm²

msm555

290 [tex]cm^{2}[/tex]

Answer:

Solution Given:

The base length [b]=5cm.

The slant height [s]=15cm.

Apothem length [a]=[tex]\frac{b}{2Tan(\frac{180}{n})}[/tex]

=[tex]\frac{5}{2Tan(\frac{180}{6})}[/tex]=4.33 cm

Now

the surface area of a regular hexagon-based pyramid=

=3b (a + s)

=3*5(4.33+15)

=289.95≈290 [tex]cm^{2}[/tex]

Step-by-step explanation: