Respuesta :
Answer:
Step-by-step explanation:
1) Expand by distributing terms.
[tex]4x+\frac{3}{10} -2x[/tex]
2) Collect like terms.
[tex](4x-2x)+\frac{3}{10}[/tex]
3) Simplify.
[tex]2x+\frac{3}{10}[/tex]
Thank you,
Eddie
[tex]\boldsymbol{\sf{\dfrac{2}{5}\left(10x+\dfrac{3}{4}\right)-2x }}[/tex]
Use the distributive property to multiply 2/5 by 10 x + 3/4.
[tex]\boldsymbol{\sf{\dfrac{2}{5}\times10x+\dfrac{2}{5}\times\left(\dfrac{2}{5}\right)-2x }}[/tex]
Express 2/5 x 10 as a single fraction.
[tex]\boldsymbol{\sf{\dfrac{2\times10}{5}x+\dfrac{2}{5}\times\left(\dfrac{2}{5}\right)-2x \ \ \longmapsto \ \ [Multiply \ 2\times10] }}[/tex]
[tex]\boldsymbol{\sf{\dfrac{20}{5}x+\dfrac{2}{5}\times\left(\dfrac{2}{5}\right)-2x \ \ \longmapsto \ \ [Divide \ 20 \ by \ 5.] }}[/tex]
[tex]\boldsymbol{\sf{4x+\dfrac{2}{5}\times\left(\dfrac{2}{5}\right)-2x }}[/tex]
Multiply 2/5 by 3/4 (to do this, multiply the numerator by the numerator and the denominator by the denominator).
[tex]\boldsymbol{\sf{4x+\dfrac{2\times3}{5\times4}-2 \ \ \longmapsto \ \ [Multiply] }}[/tex]
[tex]\boldsymbol{\sf{4x+\dfrac{6}{20}-2 }}[/tex]
Reduce the 6/20 fraction to its minimum pressure by extracting and canceling 2.
[tex]\boldsymbol{\sf{4x+\dfrac{3}{10}-2 }}[/tex]
Combine 4x and −2x to get 2x.
[tex]\red{\boxed{\boldsymbol{\sf{ \blue{Answer \ \ \longmapsto \ \ 2x+\dfrac{3}{10} }}}}}[/tex]