Respuesta :

Ankit

Answer:

[tex]d = \sqrt{40} [/tex]

Explanation:

Distance between two points is given by the formula,

[tex]d= \sqrt{((x_2 - x_1)^{2} + (y_2 - y_1)^{2} )}[/tex]

Let,

[tex] \sf Point \: 1 = (x_1,y_1)= (-3,2)[/tex]

[tex]\sf Point \: 2 = (x_2,y_2)= (3,0)[/tex]

Substituting the given coordinate in above formula,

[tex]d= \sqrt{((3 - ( - 3))^{2} + (0 - 2)^{2} )}[/tex]

[tex]d = \sqrt{ {6}^{2} + ({ - 2})^{2} }[/tex]

[tex]d = \sqrt{36 + 4} [/tex]

[tex]d = \sqrt{40} [/tex]

[tex] \sf \small \pink{Thanks }\: \green{for} \: \blue{joining} \: \orange{brainly } \: \red{community}! [/tex]