Respuesta :

Answer:

90 minutes or 1 hour 30 minutes

Step-by-step explanation:

Time taken to fill t is inversely proportional to number of pipes. We can express this as t ∝ [tex]\frac{1}{n}[/tex] where n is the number of pipes

We can also write this as t = [tex]\frac{k}{n}[/tex] where k is a constant

Using the data given 80 = [tex]\frac{k}{8}[/tex]    (1)

For 6 pipes, if the time taken is T then  

[tex]T = \frac{k}{6}[/tex]      (2)

Dividing (2) by (1) gives

[tex]\frac{T}{80} = \frac{k}{6}[/tex] ÷ [tex]\frac{k}{8}[/tex]

[tex]\frac{k}{6}[/tex] ÷ [tex]\frac{k}{8} = \frac{k}{6} \frac{8}{k} = \frac{8}{6}\\\\[/tex]

So  

[tex]\frac{T}{80} = \frac{8}{6}\\\\[/tex]

T = [tex]80 \frac{8}{6}[/tex]  (multiplying both sides by 80

And this computes to 90 minutes or 1 hour 30 minutes