a = 8, b = 4, and c = 16

Answer:
[tex]3 \frac{4}{31} [/tex]
Step-by-step explanation:
[tex] \frac{2(4) + 3(16) {}^{2} }{4(8) {}^{2} - 2(4) } [/tex]
[tex]\frac{776}{248} [/tex]
[tex]3 \frac{4}{31} [/tex]
-------------------------------------------------------------------------------------------------------
The given expression:
[tex]\sf \dfrac{2b + 3c^2}{4a^2 - 2b}[/tex]
Here given a = 8, b = 4, and c = 16
Inserting this values
[tex]\sf \dfrac{2(4) + 3(16)^2}{4(8)^2 - 2(4)}[/tex]
Simplify following
[tex]\sf \dfrac{8 + 3(256)}{4(64) - 8}[/tex]
Distribute inside parenthesis
[tex]\sf \dfrac{8 + 768}{256 - 8}[/tex]
Add/Subtract similar terms
[tex]\sf \dfrac{776}{248}[/tex]
Simplify following, in improper fraction
[tex]\sf \dfrac{97}{31}[/tex]
In mixed fraction, answer:
[tex]\sf 3\dfrac{4}{31}[/tex]