Respuesta :

Answer:

[tex]3 \frac{4}{31} [/tex]

Step-by-step explanation:

[tex] \frac{2(4) + 3(16) {}^{2} }{4(8) {}^{2} - 2(4) } [/tex]

[tex]\frac{776}{248} [/tex]

[tex]3 \frac{4}{31} [/tex]

Answer: [tex]\sf 3\dfrac{4}{31} \quad or \quad \dfrac{97}{31}[/tex]

-------------------------------------------------------------------------------------------------------

The given expression:

[tex]\sf \dfrac{2b + 3c^2}{4a^2 - 2b}[/tex]

Here given a = 8, b = 4, and c = 16

Inserting this values

[tex]\sf \dfrac{2(4) + 3(16)^2}{4(8)^2 - 2(4)}[/tex]

Simplify following

[tex]\sf \dfrac{8 + 3(256)}{4(64) - 8}[/tex]

Distribute inside parenthesis

[tex]\sf \dfrac{8 + 768}{256 - 8}[/tex]

Add/Subtract similar terms

[tex]\sf \dfrac{776}{248}[/tex]

Simplify following, in improper fraction

[tex]\sf \dfrac{97}{31}[/tex]

In mixed fraction, answer:

[tex]\sf 3\dfrac{4}{31}[/tex]