I’m done with it all but imma keep my promise and give 100 to the person who can solve this one for my challenge question on here

Answer:
[tex]\boxed{{a}^{4} + {b}^{4} + {c}^{4} =50}[/tex]
Step-by-step explanation:
[tex]a+b+c = 4[/tex]
Squaring both the side,
[tex]{(\underline{a +b} + c)}^{2} = {4}^{2} [/tex]
[tex]{(a + b)}^{2} + {c}^{2} + 2(a + b)c \: = 16[/tex]
[tex] {a}^{2} + 2ab+ {b}^{2} + {c}^{2} + 2ac + 2bc = 16[/tex]
[tex]{a}^{2} + {b}^{2} + {c}^{2} + 2ab+ 2ac + 2bc = 16[/tex]
[tex]10 + 2ab+ 2ac + 2bc = 16[/tex]
[tex] 2ab+ 2ac + 2bc = 16 - 10 = 6[/tex]
[tex]2(ab + bc + ac) = 6[/tex]
[tex] \fbox{ab + bc + ac = 3}[/tex]
Now we know that,
[tex] {a}^{3} + {b}^{3} + {c}^{3} -3abc = ( a + b + c)( {a}^{2} + {b}^{2} + {c}^{2} - ab - bc - ca)[/tex]
[tex]22 -3abc = ( 4)( 10 - (ab + bc + ca))[/tex]
[tex]22 -3abc = ( 4)( 10 - 3)[/tex]
[tex]3abc = 22 - 40 + 12[/tex]
[tex]abc = \frac{ - 6}{3} = - 2[/tex]
Now, we know that
[tex]ab + bc + ac = 3[/tex]
Squaring both the side,
[tex] {(ab + bc + ac)}^{2} = {3}^{2} [/tex]
[tex] {(ab)}^{2} + {(ac)}^{2} + {(bc)}^{2} + 2 (abbc + abac + bcac) = 9[/tex]
[tex]{(ab)}^{2} + {(ac)}^{2} + {(bc)}^{2} + 2 (a + b + c)(abc) = 9 [/tex]
[tex]{(ab)}^{2} + {(ac)}^{2} + {(bc)}^{2} + 2 \times 4 \times ( - 2) = 9[/tex]
[tex]{(ab)}^{2} + {(ac)}^{2} + {(bc)}^{2} - 16= 9[/tex]
[tex]{(ab)}^{2} + {(ac)}^{2} + {(bc)}^{2} = 25[/tex]
Now we are given that,
[tex] {a}^{2} + {b}^{2} + {c}^{2} = 10[/tex]
Squaring both the side,
[tex]{({a}^{2} + {b}^{2} + {c}^{2})}^{2} = {10}^{2} [/tex]
[tex] { {a}^{2} }^{2} + { {b}^{2} }^{2} + { {c}^{2} }^{2} + 2( {a}^{2} {b}^{2} + {b}^{2} {c}^{2} + {a}^{2} {c}^{2} ) = 100[/tex]
[tex] {a}^{4} + {b}^{4} + {c}^{4} + 2( {a}^{2} {b}^{2} + {b}^{2} {c}^{2} + {a}^{2} {c}^{2} ) = 100[/tex]
[tex]{a}^{4} + {b}^{4} + {c}^{4} + 2( 25 ) = 100[/tex]
[tex]{a}^{4} + {b}^{4} + {c}^{4} + 50= 100 [/tex]
[tex] \boxed{{a}^{4} + {b}^{4} + {c}^{4} =50}[/tex]
[tex] \small \sf Thanks \: for \: joining \: brainly \: community![/tex]
There is a secret rule hiding inbetween these equations.If we can spot out the rule we won't have to do lengthy calculations .we can do it in one line even then .
First note that degree of equation is taken as d for all the context below provided
When
d=1
d=2
d=3
d=4 we need what the expression yields
See if we observe
For d=1
Next for d=2 and d=3
The respective yields are 10 and 22
Spot the secret
70% secret exposed,rest we do
Find the difference
Then
Next one must be 4×12+2 (As it's difference before)
It's exactly
So the next chain for d=4 and d=5 are
So the respective values are