Answer:
C) 36 ft squared
Step-by-step explanation:
The area of a kite can be found using the following formula:
[tex]\boxed{\mathrm{Area = \frac{1}{2} \times d_1 \times d_2}}[/tex],
where [tex]\mathrm{d_1}[/tex] and [tex]\mathrm{d_2}[/tex] are lengths of the of the diagonals of the kite.
In this question, the lengths of the diagonals are:
• [tex]\mathrm{d_1}[/tex] = 6 ft + 12 ft = 18 ft
• [tex]\mathrm{d_2}[/tex] = 2 ft + 2 ft = 4ft
Substituting these values into the formula:
[tex]\mathrm{Area = \frac{1}{2} \times 18 \space\ ft \times 4 \space\ ft }[/tex]
[tex]\mathrm{= \bf 36 \space\ ft^2}[/tex]