The equilibrium concentration are:
[tex][Cl_{2} ]=[Br_{2} ]=[/tex] 0.856 M
[BrCl] = 0.229 M
[tex]Br_{2} (g) + Cl_{2} (g)[/tex] ↔ 2BrCl(g) K = 7.20
Equilibrium expression:
[tex]K_{eq} =\frac{(BrCl)^{2} }{(Cl_{2}) (Br_{2}) }[/tex]
As a result, we can express the following using an ICE chart and the reaction extent x:
7.20 = [tex]\frac{(2x)^{2} }{(0.200-x)^{2} }[/tex]
[tex]\sqrt{7.20} =\sqrt{\frac{(2x)^{2} }{(0.200-x)^{2} } }[/tex]
2.68 = [tex]\frac{2x}{0.200-x}[/tex]
x = 0.1146 M
Therefore, the equilibrium concentrations are:
[tex][Cl_{2} ]=[Br_{2} ]=[/tex] 0.200 M - 0.1146 M = 0.856 M
[BrCl] = 2 x 0.1146 M = 0.229 M
Learn more about Equilibrium here:
https://brainly.com/question/7151349
#SPJ4