Respuesta :

Any complex number [tex]z[/tex] can be written in trigonometric form as

[tex]z = |z| e^{i\arg(z)} = |z| \left(\cos(\arg(z)) + i \sin(\arg(z))\right)[/tex]

where [tex]|z|[/tex] is the modulus of [tex]z[/tex] and [tex]\arg(z)[/tex] is its argument, i.e. the angle [tex]z[/tex] makes with the positive real axis in the complex plane.

We have

[tex]|z| = \sqrt{3^2 + \left(\sqrt3\right)^2} = \sqrt{12} = 2\sqrt3[/tex]

and

[tex]\arg(z) = \tan^{-1}\left(\dfrac{\sqrt3}3\right) = \tan^{-1}\left(\dfrac1{\sqrt3}\right) = \dfrac\pi6[/tex]

Then

[tex]3 + \sqrt3 \, i = \boxed{2\sqrt 3 \left(\cos\left(\dfrac\pi6\right) + i \sin\left(\dfrac\pi6\right)\right)}[/tex]