Respuesta :

Answer:

7[tex]\sqrt{2}[/tex]

Step-by-step explanation:

the diagonal d divides the square into 2 right angles.

using Pythagoras' identity in one of the right triangles , then

d² = 7² + 7² = 49 + 49 = 98 ( take square root of both sides )

d = [tex]\sqrt{98}[/tex] = [tex]\sqrt{49(2)}[/tex] = [tex]\sqrt{49}[/tex] × [tex]\sqrt{2}[/tex] = 7[tex]\sqrt{2}[/tex]

Answer:

c =7√2

Step-by-step explanation:

using the Pythagorean theorem we solve the diagonal ,where the two sides are given to find the hypotenuse.

c² =a² + b²

where c is the diagonal (hypotenuse fot thr triangle)

a and b are the legs (sides)

c² =7²+7²

c²= 98

c= √98

c=√49.√2

c=7√2