contestada

Consider function f. f(x) = cube root of x - 7. Select g(x) so that f(g(x)) = g(f(x)) = x for all values of x.

Consider function f fx cube root of x 7 Select gx so that fgx gfx x for all values of x class=

Respuesta :

The function g(x) is [tex]g(x) = (x + 7)^3[/tex]

How to determine the function g(x)?

The function f(x) is given as:

[tex]f(x) = \sqrt[3]{x} - 7[/tex]

If f(g(x)) = g(f(x)) = x, then the functions are inverse functions.

So, we have:

[tex]f(x) = \sqrt[3]{x} - 7[/tex]

Rewrite as:

[tex]y = \sqrt[3]{x} - 7[/tex]

Swap x and y

[tex]x = \sqrt[3]{y} - 7[/tex]

Add 7 to both sides

[tex]x + 7 = \sqrt[3]{y}[/tex]

Take the cube of both sides

[tex]y = (x + 7)^3[/tex]

This implies that

[tex]g(x) = (x + 7)^3[/tex]

Hence, the function g(x) is [tex]g(x) = (x + 7)^3[/tex]

Read more about inverse functions at:

https://brainly.com/question/2541698

#SPJ1