Consider 4.00 L of a gas at 365 mmHg and 20. ∘C . If the container is compressed to 2.80 L and the temperature is increased to 30. ∘C , what is the new pressure, P2 , inside the container? Assume no change in the amount of gas inside the cylinder.

Respuesta :

This is an exercise in the General Combined Gas Law.

To start solving this exercise, we obtain the following data:

Data:

  • V₁ = 4.00 l
  • P₁ = 365 mmHg
  • T₁ = 20 °C + 273 = 293 K
  • V₂ = 2,80 l
  • T₂ = 30 °C + 273 = 303 K
  • P₂ = ¿?

We apply the following formula:

  • P₁V₁T₂=P₂V₂T₁     ⇒  General formula

Where:

  • P₁=Initial pressure
  • V₁=Initial volume
  • T₂=end temperature
  • P₂=end pressure
  • T₂=end temperature
  • V₁=Initial temperature

We clear for final pressure (P2)

[tex]\large\displaystyle\text{$\begin{gathered}\sf P_{2}=\frac{P_{1}V_{1}T_{2}}{V_{2}T_{1}} \ \ \to \ \ \ Formula \end{gathered}$}[/tex]

We substitute our data into the formula:

[tex]\large\displaystyle\text{$\begin{gathered}\sf P_{2}=\frac{(365 \ mmHg)(4.00 \not{l})(303 \not{K})}{(2.80 \not{l})(293\not{K})} \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf P_{2}=\frac{442380 \ mmHg}{ 820.4 } \end{gathered}$}[/tex]

[tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf P_{2}=539.224 \ mmHg \end{gathered}$}}[/tex]

Answer: The new canister pressure is 539.224 mmHg.

{ Pisces04 }